Biosketch & Curriculum Vitae

Peter R. Mouton, Ph.D.,
eRA Commons User Name: MOUTONPI

CEO & Chief Scientific Officer
SRC Biosciences

Stereology Resource Center, Inc.
1810 W. Kennedy Blvd
Tampa, FL
peter@disector.com

Professor of Stereology & Computer Sciences
University of South Florida
Tampa, FL

petermouton@usf.edu

Education, Institution & Location

Professional Positions

Dr. Mouton has served on the faculty at the Hopkins Pathology Department for six years; Director of Neurostereology Unit at the Gerontology Research Center at Hopkins Bayview/National Institute on Aging campus (Baltimore, MD); and Professor on the Affiliated Faculty at the Department of Pathology & Cell Biology and Department of Computer Science & Engineering at the University of South Florida (Tampa, FL).

Contributions to Science

SRC Biosciences follows the following three-part mission:

 1) Promote health and well-being through products, services, and research focused on understanding the neurobiological basis for brain aging and neuropathology.

 

2) Develop safe and efficacious strategies for enhancing the therapeutic management of patients afflicted with neurological disorders and mental illnesses. 

3) Provide leadership, technology, training, and research support to bioscientists in academic research, government agencies and private industries.

Service & Awards

Recent Grant Awards & Subcontracts


 

National Institute of Child Health & Human Development (NICHD/NIH) & National Institute for Nursing Research (NINR)

Project Title: AI-based Multimodal Approach to Predict Pain in Postnatal Care Scenarios

Award Type:  Phase 1 Small Business Technology Transfer (STTR) 

Project Role: Principal Investigator (PI), Yu Sun (co-PI)

Project Goal: Demonstrate the proof of concept for machine learning-based pain prediction in post-surgical neonates.  

 

Florida High Technology Corridor Grant

Award Title:  Explainable AI for Early Pain Detection in NICU 

Project Role:Co-PI (with Profs Yu Sun, Dmitry Goldgof), Dept of Computer Science & Engineering, USF, Tampa, FL

Award Type: State of Florida High Tech Corridor Technology Grant

Project Goal: Provide Explainable AI for converting multimodal sensory data into reliable predictions of time to pain onset in post-surgical neonates. 


National Science Foundation (NSF)

Project Title: Microscope-based Technology For Automatic Cell Analysis Using Unbiased Methods.
Project Role: Peter R. Mouton, Principal Investigator
Award Type: STTR Phase II Award: NSF #1926990
Project Goal: Develop and validate deep learning neural networks for automatic stereology of biological structure on stained tissue sections

Project Title: Treating with Gamma-Secretase Modulators to Prevent
Project Role: Peter R. Mouton, Principal Investigator, Neuropathology Subaward
Award Type: R01 National Institute on Aging (Mobley, William, PI, 1R01AG055523-01A1).
Project Aim: 1. Unbiased stereology to assess the neuropathology in animal models of Down’s syndrome and Alzheimer’s disease. 2. Examine the effects of gamma secretase modulator treatment before and after onset of neurodegeneration.

National Institute on Aging (NIH)

Project Title: An AI-based Multimodal Approach to Predict Pain in Postnatal Care Scenarios.
Project Role: Principal Investigator (PI) 
Award Type: National Institute on Child Health and Human Development
Project Goal: A novel AI-based early pain detection (EPD) system for postoperative pain avoidance and opioid sparing in NICU.

Florida High Tech Corridor Grant Program

Project Title: Applications of Deep Learning and Automatic Stereology to Assess Treatments for Alzheimer’s Disease.
Project Role: Co-PIs (Mouton/Goldgof))
Project Goal: Apply artificial intelligence to stereology analysis of Alzheimer’s disease neuropathology.

U.S. Department of State

Project Title: Fulbright U.S. Scholar Award
Project Role: Principal Investigator
Project Goal: Provide the international bioscience community with professional stereology support through on-site training, collaboration and consultation.

National Science Foundation (NSF)

Project Title: Support for Fall 2019 NSF I-Corps Workshop (USF, Tampa, FL).
Project Role: Principal Investigator
Project Goal: Workshop on team-based customer discovery to commercialize biotechnology for the global bioscience community.

Selected Publications (> 120 Total)

Peer-Reviewed Journals

Peer-Reviewed Books & Book Chapters

Invited Peer-Reviewed Conference Papers

Zavadakova, A., Vistejnova, L., Belinova, T., Tichanek, F., Bilikova, D., Mouton, P.R. Novel stereological method for estimation of cell counts in 3D collagen scaffolds, Scientific Reports (Nature), Sci Rep 13, 7959 (2023)

Dave, P., Kolinko, Y., Morera, H., Allen, K., Alahmari, S., Goldgof, D., Hall, L.O., Mouton, P.R. MIMO U-Net: efficient cell segmentation and counting in microscopy image sequences. Proc. SPIE 12471, Medical Imaging 2023: Digital and Computational Pathology, 124710R, 2023.

Dave P, Goldgof D, Hall LO, Kolinko Y, Allen K, Alahmari S, Mouton PR. A disector-based framework for the automatic optical fractionator. J Chem Neuroanat. Jul 12:102134, 2022.

Morera, H., Dave, P., Goldgof, D., Hall, L. O., Kolinko, Y., Allen, K., Alahmari, S., Albay, R., Becker, A., Mobley, W. C., P. R. Mouton. Classification of Global Microglia Proliferation Based on Deep Learning with Local Images. SPIE Medical Imaging: Image Processing, 12032-89, 2022. 

Salekin, M.S., Zamzmi, G., Goldgof, D., Mouton, P.R., Ashmeade, T., Prescott, E., Huang, Y., Sun, Y. Attentional generative multimodal network for neonatal postoperative pain estimation, Medical Image Computing and Computer Assisted Intervention (MICCAI) 13433: 749–759, Springer Nature (Switzerland), 2022.

Klebe, D., Tribewal, M., Vanaparthy, R., Varghese, M., Cheng, B., Mouton, P.R., Velishek, J., Dobrenis, K., Hof, P.R., and Ballabh, P. Erratum: Reduced Hippocampal Dendrite Branching, Spine Density and Neurocognitive Function in Premature Rabbits, and Reversal with Estrogen or TrkB Agonist Treatment. Cerebral Cortex 5;31(4):2306, 2021.

Salekin, M.S., Mouton, P.R., et al.,. Future Roles of Artificial Intelligence in Early Pain Management of Newborns. Pediatric & Neonatal Pain, 1–12, August 5, 2021.

Alahmari, S., Goldgof, D., Mouton, P.R., Hall, L. Challenges for the Reproducibility of Deep Learning Models. IEEE Access, 8: 11860 – 211868, November 2020.   

Alahmari, S., Goldgof, D., Hall, D. Phoulady, H.A. Patel, R., Mouton, P.R. Automated Counts of Stained Cells by Deep Learning and Unbiased Stereology. J. Chem Neuroant, 96:94-101, 2019.

Selected Papers (pre-2019)

Courchesne, E., Mouton, P.R., Calhoun, M.E., et al. Neuron Number And Size In Prefrontal Cortex Of Children With Autism. JAMA, 306 (18):2001-10, November 9, 2011.

Stoner, R., Chow, M.L., Boyle, M.P., Sunkin, S.M., Mouton, P.R., et al. Discrete Patches of Laminar Disorganization in Young Autistic Neocortex, New England Journal of Medicine, March 17, 2014.

Harry, G.J., Hooth, M.J., Vallant, M., Behl, M., Travlos, G.S., Howard, J.L., Price, C.J., McBride, S., Mervis, R., Mouton, P. R. Neurodevelopmental Effects Of Gestational And Perinatal Thyroid Disruption In Rats. Toxics, 2, 496-532, 2014.

Long JM, Kalehua AN, Muth NJ, Calhoun ME, Jucker M, Hengemihle JM, Ingram DK, Mouton PR. Stereological Analysis Of Astrocyte And Microglia In Aging Mouse Hippocampus. Neurobiol Aging 19:497-503, 1999.

Mouton, P.R. Applications Of Unbiased Stereology To Neurodevelopmental Toxicology, In: Developmental Neurotoxicology Research: Principles, Models, Techniques, Strategies And Mechanisms (C. Wang And W. Slikke, Eds), John Wiley & Sons, Hoboken, pg. 53-77, 2011.

Mouton PR, Martin LJ, Calhoun ME, Dal Forno G, Troncoso JC, Price DL. Cognitive Decline Strongly Correlates With Cortical Atrophy In Alzheimer’s Dementia. Neurobiol Aging 19: 371-377, 1998.

Mouton, P.R., et al. Effects Of Age And LPS- Mediated Inflammation On Central Catecholaminergic Neuron Number In B6 Mice. Neurobiol Aging, 423:27-36, 2012.

Manaye, K.F., Mouton, P.R., et al., Age-Related Loss Of Noradrenergic Neurons In The Brains Of Triple Transgenic Mice. Age 35: 139-147, 2013.

Long JM, Mouton PR, Jucker M, Ingram DK. What Counts In Brain Aging? Design-Based Stereological Analysis Of Cell Number. J Gerontology 54A: B407-B417, 1999.

Sze C, Troncoso JT, Kawas CH, Mouton PR, Price DL, Martin LJ. Loss Of The Presynaptic Vesicle Protein Synaptophysin In Hippocampus Correlates With Early Cognitive Decline In Aged Humans. J Neuropath Exp Neurol 56: 933-944, 1997

Alahmari, S.A., Phoulady, H.A., Dave, P., Morera, H., Hall, L.O., Goldgof, D., Mouton, P.R. Applications of Automatic Unbiased  Stereology to Neural Tissue, In Unbiased Stereological Techniques (Javier Bernacer, Maria Garcia-Amado, Eds.), Springer Press, in press.

Phoulady, H.A., Zhou, M., Goldgof, D., Hall, L., Mouton, P.R. Automatic quantification and classification of cervical cancer via adaptive nucleus shape modeling, In IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, 2016. 

Mouton, P.R. Quantitative Anatomy Using Unbiased Stereology. In: CRC Handbook of Imaging in Biological Mechanics (Corey P. Neu and Guy M. Genin, eds), CRC Press, London, October, 2014.

Mouton, P.R. Neurostereology, Wiley Blackwell Press, Boston, 280 pages, November 2013.

Mouton, P.R. Applications Of Unbiased Stereology To Neurodevelopmental Toxicology, In: Developmental Neurotoxicology Research: Principles, Models, Techniques, Strategies And Mechanisms (C. Wang And W. Slikke, Eds), John Wiley & Sons, Hoboken, pg. 53-77, 2011.

Mouton, P.R. A Concise Guide to Unbiased Stereology,” Johns Hopkins University Press,  Baltimore MD., 2011.

Mouton, P.R. Gordon, M. Stereological And Image Analysis Techniques For Quantitative Assessment Of Neurotoxicology. In: Neurotoxicology, 3rd Edition, Target Organ Toxicology Series, G. Jean Harry, Hugh A. Tilson, (Eds), Taylor & Francis Press, London & New York, pp. 243-267, March 2010.

Mouton, P.R. Principles & Practices of Unbiased Stereology: An Introduction For Bioscientists. Johns Hopkins University Press, Baltimore MD., 2002.

Sisodia, S., Thinakaren, G., Van Koch, C., Slunt, H., Roskams, J., Kitt, C.A., Masliah, E., Koliatosos, V., Mouton, P.R. Martin., L.J., Reed, R., Ronnett, G.V., Zheng, H., Van Der Ploeg, L., Price, D.L. In-vivo biology of APP and its homologues. In: Neurodegenerative Diseases: Molecular And Cellular Mechanisms And Therapeutic Approaches. (Gary Fiskum, Ed.), Plenum, New York. 485 Pp, 1996.

Hossain, M. I., Zamzmi, G., Mouton, P.R., Sun, Y., Goldgof, D. Enhancing Neonatal Pain Assessment Transparency via Explanatory Training Examples Identification, IEEE Computer Based Medical Systems (CBMS), 2023, in press

Morera, H.M., Dave, P., Alahmari, S. Kolinko, Y., Hall, L.O., Goldgof, D., Mouton, P.R. MIMO YOLO – A Multiple Input Multiple Output Model for Automatic Cell Counting. AI for Medical Imaging, IEEE International Symposium on Computer-Based Medical Systems (CBMS), 2023.

Alahmari, S. S, Goldgof, D., Hall, L., Mouton, P.R., A Review of Nuclei Detection and Segmentation on Microscopy Images using Deep Learning With Applications to Unbiased Stereology Counting. IEEE Transactions on Neural Networks and Learning Systems (TNNLS) IEEE Access 1-20, November 3, 2022.

Salekin, M.S., Zamzmi, G., Goldgof, D., Mouton, P.R., Ashmeade, T., Prescott, E., Huang, Y., Sun, Y. Attentional generative multimodal network for neonatal postoperative pain estimation, Medical Image Computing and Computer Assisted Intervention (MICCAI) 13433: 749–759, Springer Nature (Switzerland), 2022.

Phoulady, H. A., Mouton, P.R. New cervical cytology dataset for nucleus detection and image classification (Cervix93) and methods for cervical nucleus detection. IEEE International Symposium on Biomedical Imaging, arXiv:1811.09651, November 23, 2018.

Alahmari, S., Goldgof, D., Mouton, P.R., Hall, L. Challenges for the Reproducibility of Deep Learning Models. IEEE Access, 8: 11860 – 211868, November 2020.  

Alahmari, S., Hall, L.O., Goldgof, D., Mouton, P.R. Automatic Cell Counting using Active Deep Learning and Unbiased Stereology, IEEE International Conference on Systems, Man, and Cybernetics (SMC), Bari, Italy, 2019. 

Phoulady, H.A., Zhou, M., Goldgof, D., Hall, L., Mouton, P.R. Automatic quantification and classification of cervical cancer via adaptive nucleus shape modeling, In IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, 2016. 

Phoulady, H.A., Goldgof, D.B., Hall, L.O., Mouton, P.R. Histopathology image segmentation with hierarchical multilevel thresholding, In Proceedings of the SPIE Medical Imaging on Digital Pathology, San Diego, CA, 2016.

 

Selected Awards, Honors, Patents (since 1997)

Intellectual Property